2. LOGIC

§2.1. Propositional Logic

All of mathematics can be built on Set Theory. This
Is not the only possible foundation. The more recent study
of Category Theory provides another approach. But each
of these foundations rests on an even more fundamental
ground — that of logic.

Indeed logic supports all of our rational thought.
The surprising thing is that despite some snide remarks
about ‘feminine logic’ there are no real cultural
differences in logic. It seems that our logic is somehow
hard-wired into our brains. Logicians have experimented
with alternative logics but they still use the familiar naive
logic to analyse these exotic logics.

Like most of us, mathematicians take logic pretty
much for granted, though they do make logic work much
harder than most people.

The basic object in logic is a statement (or
proposition). It’s a sentence, possibly involving symbols,
that can be validly assigned exactly one of the truth
values T (TRUE) or F (FALSE). Sentences such as those
that ask questions or give commands are obviously
excluded. But we must also exclude self-referential
sentences, even though they appears to be statements.
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Take the sentence:
THIS STATEMENT IS FALSE
If it’s true then it’s false and if it’s false then it’s true!

Sometimes individual sentences may be valid
statements, involving no self-referentiality, but taken
together they lose that status.

Consider the following pair of sentences:

(1) THE SECOND STATEMENT IS TRUE
(2) THE FIRST STATEMENT IS FALSE

If (1) is true then (2) is true and so (1) is false, a
contradiction. But if (1) is false then (2) is false and so (1)
IS true, again a contradiction. Here there is indirect self-
referentiality.

But avoiding self-referentially is not enough.
Consider the following infinite list of sentences:

(1) At least one of the following is FALSE.
(2) At least one of the following is FALSE.
(3) At least one of the following is FALSE.
(4) At least one of the following is FALSE.
(5) At least one of the following is FALSE.

26



At first sight it might appear that each sentence in
the list is saying the same thing, but of course ‘the
following’ refers to a decreasing set of sentences as we go
down the list.

Clearly there’s no self-referentiality here, direct or
indirect, in this list. But suppose that statement (n) is false.
Then all of those that follow must be true, including
statement (n + 1). But if statement (n + 1) is true then
statement (m) is false for some m > n + 1, a contradiction.
So each statement in the list must be true, also a
contradiction.

It’s not an easy thing to define precisely what
properties a sentence, or a collection of sentences, has to
satisfy in order for them to be allowed to be considered as
statements, so we just give up and hope for the best,
confident that our mathematical intuition will guide us.

We postulate the existence of a collection of
primitive statements and focus on compound statements
that can be built up from them. The tools for doing this
are called logical operators.

If p is a statement then —p denotes the statement ‘not p’.
If p and q are statements then:

P A g denotes the statement that ‘both p and q’,

p v ( denotes the statement ‘p or @’,

p — q denotes ‘p implies Q’,

p <> g means ‘p implies g and g implies p’.
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§2.2. Quantifier Logic

A predicate is a statement that involves variables.
Predicates become propositions when particular objects
(such as integers) are substituted for the variables. The
resulting propositions have truth values that depend on
those elements.

Substituting for one variable in a predicate reduces
the number of variables by 1. Substituting for all the
variables produces a statement. Now there’s another way
of reducing the number of variables in a predicate and that
IS to quantify one or more variables.

Quantifiers will be familiar to you, even if you’ve
never heard the word. In fact mathematics couldn’t exist
without them. There’s the universal quantifier, denoted
by V, and the existential quantifier 3.

Suppose Px is a predicate involving one variable.
The statement Vx[Px] means “for all x, Px’, that is, ‘Px is
TRUE for all x".

The statement Ix[Px] means ‘for some X, Px is
TRUE’. This means that there’s at least one x for which
Px is TRUE. Sometimes it’s read as “there exists X such
that Px”.

Behind a quantifier there’s a non-empty universe
of quantification. This is a class of objects from which
the x comes. We refrain from calling it a set. What exactly
is the difference between a ‘set’ and a ‘class’? Many years
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ago Bertrand Russell drew attention to a certain paradox,
which is now known as the Russell Paradox.

If one is allowed to talk about the set of all sets then
we should be able to consider the subset consisting of all
sets that are not elements of themselves.

Now the set of all integers is not an integer and the
set of all functions of a real variable is not itself a function
of a real variable. But the set of all sets, if we permitted
such a thing, would be itself a set and so would be an
element of itself.

So let S = {x | x ¢ x}, with the universe of
guantification to be the set of all sets. Now is S € S? If
the answer is “yes” then S has to satisfy the defining
property for S, namely S ¢ S. But this is a contradiction.
If the answer is “no” then has to satisfy the negation of
the defining property of S, that is S € S, again a
contradiction.

You may need to read this carefully several times.
This is a complete contradiction. Notice that there is a hint
of self-referentiality in the notion of the set of all sets.

So, not every adjective has a corresponding noun.
Not every valid predicate can lead to a set. We can’t
contemplate such a thing as the set of all sets. Instead we
call it a class.

Now this might seem to be just a clever sleight of
hand, substituting a different word. But the important
difference is that classes are collections which are not
elements of other classes, unless they happen to be sets.
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The class of all integers is also a set and so this set
of integers can be an element of a larger set. But the class
of all sets is what is known as a proper class. It’s a class,
but not a set.

So we can’t have the universe of quantification be
the class of all sets. So S = {x | x ¢ x} denotes the class of
all sets that are not elements of themselves. All that the
Russell Paradox now shows is that S is a proper class.

We’ll state that a set is an undefined object, with
membership, denoted by ‘€’, as an undefined relation
between sets.

As we develop set theory, and on top of it the whole
structure of mathematics, we must empty our minds of our
intuitive concept of sets and set membership. Everything
must be proved from the axioms, not by appealing to our
innate concept of collections of things. Of course that
doesn’t stop us thinking of sets in the usual way. Intuition
is a valuable tool in developing mathematics. However
we must empty ourselves of this intuition when writing,
or reading proofs. Every theorem in Set Theory must
stand on the foundation of the set theory axioms. But, as
we reflect on these theorems, we improve our intuitive
concept of a set.

When we use the word ‘class’ and ‘universe’ we
mean a set in the informal, intuitive sense while a ‘set’ is
part of a collection of undefined objects in our Set Theory.
There’s nothing wrong with talking about the class of all
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sets, but if we attempt to make this class itself a set, within
our system, we get a logical contradiction.

An n-ary predicate is one which involves n free
variables. Each time a free variable is quantified the
number of free variables is reduced by one. Special terms
are: unary if n =1, binary if n = 2 and ternary if n = 3.
And, of course, if n =0 it is a statement.

The following properties of quantifiers are intuitively
obvious though, if we wanted to proceed more formally
with our logic, we’d have to take some of them as axioms,
and prove the others.

QUANTIFICATION RULES

(1) —=VX[PX] <> IX[-Px] If something isn’t always TRUE
it’s sometimes FALSE.

(2) —3X[Px] <> VX[-Px] Ifit’s not the case that something
can be TRUE it must always be FALSE.

(3) VXPx — 3xPx. If something is always TRUE then it is
sometimes TRUE.

(4) VXVYPXy <> VyVxPxy.

(5) IxIYyPxy <> Fy3IxPxy.
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(6) IxVYyPxy — Vy3axPxy. If there’s an X that makes Pxy
always TRUE then for all x there’s a y that makes Pxy
TRUE.

You might have difficulty in seeing that (6) is
intuitively obvious, so this example may help. If Pxy was
‘X loves y’ then Vy3xPxy says that everyone has someone
who loves them. But 3IxVyPxy is a stronger statement
which has a theological flavour: there is someone who
loves everybody. If you’re an atheist you may not believe
this stronger statement but you might believe the weaker
one.

The explanations provided make these six rules
seem plausible. However we’d need to accept them as
axioms if we were doing our logic formally, or at least
adopt (1), (3) (4) and (6) as axioms and prove (2) and (5)
as consequences.

With a predicate involving two variables there are
eight ways they can be
quantified: each of x,y
can be quantified by V
or 3 and they can be
quantified in either
order. The logical
relationships between
them are displayed by
this diagram.




§2.3. Negation Rules

To prove a theorem by
contradiction requires the negation of
the theorem to be assumed in order to
reach a contradiction. If the statement
has a complicated logical structure it
may be necessary to rewrite this negation more simply.
One can do this by using the following rules describing
the way negation interacts with the other truth operators
and the two quantifiers.

PROPOSITION NEGATION

—p P
pAg —Pp v —(Q
Pvq —PAr—q
P—>Q pPA—Q
p<( p<>—(Q
VXPx Ix —Px
IXPX VX —PXx

§2.4. Relations and Functions

A unary predicate is a property, such as ‘X is even’
or ‘X 1s female’.

A relation is a binary predicate, such as ‘x <y’ or
‘x knows y’. We could write these symbolically as xLy for
‘x <y’ and ‘xKy’ for ‘x knows y’.
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You may recall that the first time you met the word
‘function’ in mathematics it was a formula. Later you saw
a more sophisticated definition: a function is a rule that
associates with every x a unique value of y. There was no
mention of sets. Later you learnt a more sophisticated
definition that referred to domains and codomains.

A function f :X —Y is a pair of sets X and Y, called
the domain and codomain respectively, together with a
rule that associates with every x € X auniquey € Y.

But we haven’t yet created any sets and already we
need to talk about functions in order to use them in one of
our axioms. So we have to revert to a definition that
doesn’t mention sets. A function is a relation xFy such
that VxVyVz[xFy A xFz — y = z]. The unique y such that
XFy is denoted by F(x).

In the context of our set theory we limit relations,
and hence functions, to those that can be expressed
entirely in terms of the basic membership relation x € y.
Of course relations and functions that can be expressed in
terms of relations that themselves can be expressed in
terms of set membership will also be permitted.

For example we will define equality of sets in terms
of them having precisely the same elements. That is:

S=Tmeans Vx[x € S<>x € T]

So statements of the form x = y are permitted in the
definition of a set relation or function.
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