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2. LOGIC 
 

§2.1. Propositional Logic 
All of mathematics can be built on Set Theory. This 

is not the only possible foundation. The more recent study 

of Category Theory provides another approach. But each 

of these foundations rests on an even more fundamental 

ground – that of logic. 

Indeed logic supports all of our rational thought. 

The surprising thing is that despite some snide remarks 

about ‘feminine logic’ there are no real cultural 

differences in logic. It seems that our logic is somehow 

hard-wired into our brains. Logicians have experimented 

with alternative logics but they still use the familiar naïve 

logic to analyse these exotic logics. 

Like most of us, mathematicians take logic pretty 

much for granted, though they do make logic work much 

harder than most people. 

 

The basic object in logic is a statement (or 

proposition). It’s a sentence, possibly involving symbols, 

that can be validly assigned exactly one of the truth 

values T (TRUE) or F (FALSE). Sentences such as those 

that ask questions or give commands are obviously 

excluded. But we must also exclude self-referential 

sentences, even though they appears to be statements. 
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Take the sentence: 

 

THIS STATEMENT IS FALSE 

 

If it’s true then it’s false and if it’s false then it’s true! 

 

Sometimes individual sentences may be valid 

statements, involving no self-referentiality, but taken 

together they lose that status. 

 

Consider the following pair of sentences: 

 

(1) THE SECOND STATEMENT IS TRUE 

(2) THE FIRST STATEMENT IS FALSE 

 

 If (1) is true then (2) is true and so (1) is false, a 

contradiction. But if (1) is false then (2) is false and so (1) 

is true, again a contradiction. Here there is indirect self-

referentiality. 

 

But avoiding self-referentially is not enough. 

Consider the following infinite list of sentences: 

 

(1) At least one of the following is FALSE. 

(2) At least one of the following is FALSE. 

(3) At least one of the following is FALSE. 

(4) At least one of the following is FALSE. 

(5) At least one of the following is FALSE. 

……………………………………………... 
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At first sight it might appear that each sentence in 

the list is saying the same thing, but of course ‘the 

following’ refers to a decreasing set of sentences as we go 

down the list. 

 

Clearly there’s no self-referentiality here, direct or 

indirect, in this list. But suppose that statement (n) is false. 

Then all of those that follow must be true, including 

statement (n + 1). But if statement (n + 1) is true then 

statement (m) is false for some m > n + 1, a contradiction. 

So each statement in the list must be true, also a 

contradiction. 

 

 It’s not an easy thing to define precisely what 

properties a sentence, or a collection of sentences, has to 

satisfy in order for them to be allowed to be considered as 

statements, so we just give up and hope for the best, 

confident that our mathematical intuition will guide us. 

We postulate the existence of a collection of 

primitive statements and focus on compound statements 

that can be built up from them. The tools for doing this 

are called logical operators. 

 

If p is a statement then −p denotes the statement ‘not p’. 

If  p  and  q  are statements then: 

p  q denotes the statement that ‘both p and q’, 

p  q denotes the statement ‘p  or  q’, 

p → q denotes ‘p  implies  q’, 

p  q means ‘p implies q and q implies p’. 
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§2.2. Quantifier Logic 
 A predicate is a statement that involves variables. 

Predicates become propositions when particular objects 

(such as integers) are substituted for the variables. The 

resulting propositions have truth values that depend on 

those elements. 

 

 Substituting for one variable in a predicate reduces 

the number of variables by 1. Substituting for all the 

variables produces a statement. Now there’s another way 

of reducing the number of variables in a predicate and that 

is to quantify one or more variables. 

 Quantifiers will be familiar to you, even if you’ve 

never heard the word. In fact mathematics couldn’t exist 

without them. There’s the universal quantifier, denoted 

by , and the existential quantifier . 

 Suppose Px is a predicate involving one variable. 

The statement x[Px] means ‘for all x, Px’, that is, ‘Px is 

TRUE for all x’. 

 The statement x[Px] means ‘for some x, Px is 

TRUE’. This means that there’s at least one x for which 

Px is TRUE. Sometimes it’s read as “there exists x such 

that Px”. 

 

 Behind a quantifier there’s a non-empty universe 

of quantification. This is a class of objects from which 

the x comes. We refrain from calling it a set.  What exactly 

is the difference between a ‘set’ and a ‘class’? Many years 



 29 

ago Bertrand Russell drew attention to a certain paradox, 

which is now known as the Russell Paradox. 

 If one is allowed to talk about the set of all sets then 

we should be able to consider the subset consisting of all 

sets that are not elements of themselves. 

 Now the set of all integers is not an integer and the 

set of all functions of a real variable is not itself a function 

of a real variable. But the set of all sets, if we permitted 

such a thing, would be itself a set and so would be an 

element of itself. 

 So let S = {x | x  x}, with the universe of 

quantification to be the set of all sets. Now is S  S? If 

the answer is “yes” then S has to satisfy the defining 

property for S, namely S  S. But this is a contradiction. 

If the answer is “no” then has to satisfy the negation of 

the defining property of S, that is S  S, again a 

contradiction. 

 You may need to read this carefully several times. 

This is a complete contradiction. Notice that there is a hint 

of self-referentiality in the notion of the set of all sets. 

 So, not every adjective has a corresponding noun. 

Not every valid predicate can lead to a set. We can’t 

contemplate such a thing as the set of all sets. Instead we 

call it a class. 

 Now this might seem to be just a clever sleight of 

hand, substituting a different word. But the important 

difference is that classes are collections which are not 

elements of other classes, unless they happen to be sets. 
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 The class of all integers is also a set and so this set 

of integers can be an element of a larger set. But the class 

of all sets is what is known as a proper class. It’s a class, 

but not a set. 

 So we can’t have the universe of quantification be 

the class of all sets. So S = {x | x  x} denotes the class of 

all sets that are not elements of themselves. All that the 

Russell Paradox now shows is that S is a proper class. 

 

 We’ll state that a set is an undefined object, with 

membership, denoted by ‘’, as an undefined relation 

between sets. 

 As we develop set theory, and on top of it the whole 

structure of mathematics, we must empty our minds of our 

intuitive concept of sets and set membership.  Everything 

must be proved from the axioms, not by appealing to our 

innate concept of collections of things. Of course that 

doesn’t stop us thinking of sets in the usual way. Intuition 

is a valuable tool in developing mathematics. However 

we must empty ourselves of this intuition when writing, 

or reading proofs. Every theorem in Set Theory must 

stand on the foundation of the set theory axioms. But, as 

we reflect on these theorems, we improve our intuitive 

concept of a set. 

 

 When we use the word ‘class’ and ‘universe’ we 

mean a set in the informal, intuitive sense while a ‘set’ is 

part of a collection of undefined objects in our Set Theory. 

There’s nothing wrong with talking about the class of all 
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sets, but if we attempt to make this class itself a set, within 

our system, we get a logical contradiction. 

 

 An n-ary predicate is one which involves n free 

variables. Each time a free variable is quantified the 

number of free variables is reduced by one. Special terms 

are: unary if n = 1, binary if n = 2 and ternary if n = 3. 

And, of course, if n = 0 it is a statement. 

 

The following properties of quantifiers are intuitively 

obvious though, if we wanted to proceed more formally 

with our logic, we’d have to take some of them as axioms, 

and prove the others. 

 

QUANTIFICATION RULES 

(1) −x[Px]  x[−Px] If something isn’t always TRUE 

it’s sometimes FALSE. 

 

(2) −x[Px]  x[−Px] If it’s not the case that something 

can be TRUE it must always be FALSE.  

 

(3) xPx → xPx. If something is always TRUE then it is 

sometimes TRUE. 

 

(4) xyPxy  yxPxy. 

 

(5) xyPxy  yxPxy. 
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(6) xyPxy → yxPxy. If there’s an x that makes Pxy 

always TRUE then for all x there’s a y that makes Pxy 

TRUE. 

 

 You might have difficulty in seeing that (6) is 

intuitively obvious, so this example may help. If Pxy was 

‘x loves y’ then yxPxy says that everyone has someone 

who loves them. But xyPxy is a stronger statement 

which has a theological flavour: there is someone who 

loves everybody. If you’re an atheist you may not believe 

this stronger statement but you might believe the weaker 

one. 

 

 The explanations provided make these six rules 

seem plausible. However we’d need to accept them as 

axioms if we were doing our logic formally, or at least 

adopt (1), (3) (4) and (6) as axioms and prove (2) and (5) 

as consequences. 

 

 With a predicate involving two variables there are 

eight ways they can be 

quantified: each of  x, y 

can be quantified by    

or   and they can be 

quantified in either 

order. The logical 

relationships between 

them are displayed by 

this diagram. 
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 §2.3. Negation Rules 
 To prove a theorem by 

contradiction requires the negation of 

the theorem to be assumed in order to 

reach a contradiction. If the statement 

has a complicated logical structure it 

may be necessary to rewrite this negation more simply.  

One can do this by using the following rules describing 

the way negation interacts with the other truth operators 

and the two quantifiers. 
 

 

 

 

 

 

 

 

 

 

 

 

§2.4. Relations and Functions 
 A unary predicate is a property, such as ‘x is even’ 

or ‘x is female’. 

 A relation is a binary predicate, such as ‘x < y’ or 

‘x knows y’. We could write these symbolically as xLy for 

‘x < y’ and ‘xKy’ for ‘x knows y’. 

 

PROPOSITION NEGATION 

−p p 

p  q −p  −q 

p  q −p  −q 

p → q p  −q 

p  q p  −q 

xPx x −Px 

xPx x −Px 
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 You may recall that the first time you met the word 

‘function’ in mathematics it was a formula. Later you saw 

a more sophisticated definition: a function is a rule that 

associates with every x a unique value of y. There was no 

mention of sets. Later you learnt a more sophisticated 

definition that referred to domains and codomains. 

 A function f :X →Y is a pair of sets X and Y, called 

the domain and codomain respectively, together with a 

rule that associates with every x  X a unique y  Y. 

 But we haven’t yet created any sets and already we 

need to talk about functions in order to use them in one of 

our axioms. So we have to revert to a definition that 

doesn’t mention sets. A function is a relation xFy such 

that xyz[xFy  xFz → y = z]. The unique y such that 

xFy is denoted by F(x). 

 

 In the context of our set theory we limit relations, 

and hence functions, to those that can be expressed 

entirely in terms of the basic membership relation x  y. 

Of course relations and functions that can be expressed in 

terms of relations that themselves can be expressed in 

terms of set membership will also be permitted. 

 For example we will define equality of sets in terms 

of them having precisely the same elements.  That is: 

 

S = T means x[x  S  x  T] 

 

So statements of the form x = y are permitted in the 

definition of a set relation or function. 


